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Abstract. The graph partitioning problem is widely used and studied in many practical and theoretical
applications. The multilevel strategies represent today one of the most effective and efficient generic
frameworks for solving this problem on large-scale graphs. Most of the attention in designing the
multilevel partitioning frameworks has been on the refinement phase. In this work we focus on the
coarsening phase, which is responsible for creating structurally similar to the original but smaller
graphs. We compare different matching- and AMG-based coarsening schemes, experiment with the
algebraic distance between nodes, and demonstrate computational results on several classes of graphs
that emphasize the running time and quality advantages of different coarsenings.

1 Introduction

Graph partitioning is a class of problems used in many fields of computer science and engineering. Applica-
tions include VLSI design, load balancing for parallel computations, network analysis, and optimal scheduling.
The goal is to partition the vertices of a graph into a certain number of disjoint sets of approximately the
same size, so that a cut metric is minimized. This problem is NP-complete even for several restricted classes
of graphs, and there is no constant factor approximation algorithm for general graphs [6]. In this paper we
focus on a version of the problem that constrains the maximum block size to (1 + ε) times the average block
size and tries to minimize the total cut size, namely, the number of edges that run between blocks.

Because of the practical importance, many heuristics of different nature (spectral [19], combinatorial
[11], evolutionist [5,24], etc.) have been developed to provide an approximate result in a reasonable (and,
one hopes, linear) computational time. We refer the reader to [12,26,33] for more material. However, only
the introduction of the general-purpose multilevel methods during the 1990s has provided a breakthrough
in efficiency and quality. The basic idea can be traced back to multigrid solvers for solving elliptic partial
differential equations [31] but more recent practical methods are based on mostly graph-theoretic aspects
of, in particular, edge contraction and local search. Well-known software packages based on this approach
include Jostle [33], Metis [26], DiBaP [17], and Scotch [18].

A multilevel algorithm consists of two main phases: coarsening – where the problem instance is grad-
ually mapped to smaller ones to reduce the original complexity (i.e., the graph underlying the problem is
compressed), and uncoarsening – where the solution for the original instance is constructed by using the
information inherited from the solutions created at the next coarser levels. So far, most of the attention
in designing the multilevel partitioning frameworks has been on the uncoarsening phase. In this work we
focus on the coarsening phase, which is responsible for creating graphs that are smaller than but structurally
similar to the given graph. We compare different coarsening schemes, introduce new elements to them, and
demonstrate computational results. For this purpose different coarsening schemes are integrated into the
graph partitioning framework KaFFPa [25].

The paper is organized as follows. We begin in Section 2 by introducing notation and the multilevel ap-
proach. In Section 3 we describe different coarsening schemes, including a novel algebraic, multigrid-inspired
balanced coarsening scheme and matching-based coarsening schemes, as well as new measures for connectiv-
ity. We present a large experimental evaluation in Section 4 on graphs arising in real-world applications and
on graphs that are specifically designed to be hard for multilevel algorithms.
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2 Preliminaries

Consider an undirected graph G = (V,E, c, ω) with edge weights3 ω : E → R>0, node weights c : V → R≥0,
n = |V |, and m = |E|. We extend c and ω to sets; in other words, c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=∑

e∈E′ ω(e). Here, Γ (v) := {u : {v, u} ∈ E} denotes the neighbors of v. We are looking for blocks of nodes
V1,. . . ,Vk that partition V , namely, V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i 6= j. The balancing constraint
demands that ∀i ∈ {1..k} : c(Vi) ≤ Lmax := (1+ε)c(V )/k+maxv∈V c(v) for some parameter ε. The last term
in this equation arises because each node is atomic and therefore a deviation of the heaviest node has to be
allowed. The objective is to minimize the total cut

∑
i<j ω(Eij) where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}.

A vertex v ∈ Vi that has a neighbor w ∈ Vj , i 6= j, is a boundary vertex. We denote by nnzr(A, i) and
nnzc(A, i) the number of nonzero entries in the ith row or column of a matrix A, respectively.

A matching M ⊆ E is a set of edges that do not share any common nodes; that is, the graph (V,M)
has maximum degree one. Contracting an edge {u, v} means replacing the nodes u and v by a new node x
connected to the former neighbors of u and v. We set c(x) = c(u) + c(v) so the weight of a node at each level
is the number of nodes it is representing in the original graph. If replacing edges of the form {u,w},{v, w}
would generate two parallel edges {x,w}, we insert a single edge with ω({x,w}) = ω({u,w}) + ω({v, w}).
Uncontracting an edge e undoes its contraction.

2.1 Multilevel Graph Partitioning

In the multilevel framework we construct a hierarchy of decreasing-size graphs,G0, G1, . . . , Gk, by coarsening,
starting from the given graph G0 such that each next-coarser graph Gi reflects basic properties of the previous
graph Gi−1. At the coarsest level Gk is partitioned by a hybrid of external solvers, and starting from the (k−
1)th level the solution is projected gradually (level by level) to the finest level. Each projection is followed by
the refinement, which moves nodes between the blocks in order to reduce the size of the cut. This entire process
is called a V-cycle (see Figure 1). KaFFPa [25] extended the concept of iterated multilevel algorithms which
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Fig. 1. V- and F-cycles schemes.

was introduced for graph partitioning by Walshaw et al. [32].
The main idea is to iterate the multilevel-scheme using dif-
ferent random seeds for coarsening and uncoarsening. This
ensures non-decreased partition quality since the refinement
algorithms of KaFFPa guarantee no worsening. In this pa-
per, for the purpose of comparison we consider also F-cycles
[25] (see Figure 1) as a potentially stronger and slower ver-
sion of the multilevel framework for the graph partitioning
problem. The detailed description of F-cycles for the multi-
level graph partitioning framework can be found in [25].

3 Coarsening Schemes

One of the most important concerns of multilevel schemes is a measure of the connection strength between
vertices. For matching-based coarsening schemes, experiments indicate that more sophisticated edge rating
functions are superior to edge weight as a criterion for the matching algorithm [13]. To be more precise first
the edges get rated using a rating function that indicates how much sense it makes to contract an edge. Then
a matching algorithm tries to maximize the sum of the ratings of the edges to be contracted. The default
configurations of KaFFPa employ the ratings

expansion∗2({u, v}) := ω({u, v})2/c(u)c(v), and

innerOuter({u, v}) := ω({u, v})/(Out(v) + Out(u)− 2ω(u, v)),

where Out(v) :=
∑
x∈Γ (v) ω({v, x}), since they yielded the best results in [13].

3 Subscripts will be used for a short notation; i.e., ωij corresponds to the weight of {i, j} ∈ E.
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Algebraic distance for graph partitioning. The notion of algebraic distance introduced in [21,7] is based
on the principle of obtaining low-residual error components used in the Bootstrap AMG [4]. When a priori
knowledge of the nature of this error is not available, slightly relaxed random vectors are used to approximate
it. This principle was used for linear ordering problems to distinguish between local and global edges [21].
The main difference between the k-partitioning problem and other (not necessarily combinatorial) problems
for which the algebraic distance has been tested so far is the balancing constraints. For many instances,
it is important to keep the coarsening balanced; otherwise, even though the structural information will be
captured by a sophisticated coarsening procedure, most of the actual computational work that constructs
the approximate solution will be done by the refinement iterations. Bounding the number of refinement
iterations may dramatically decrease its quality. Thus, a volume-normalized algebraic distance is introduced
to take into account the balancing of vertices.

Given the Laplacian of a graph L = D −W , where W is a weighted adjacency matrix of a graph and
D is the diagonal matrix with entries Dii =

∑
j ωij , we define its volume-normalized version denoted by

L̃ = D̃ − W̃ based on volume-normalized edge weights ω̃ij = ωij/
√
c(i)c(j). We define an iteration matrix

H for Jacobi over-relaxation (also known as a lazy random-walk matrix) as

H = (1− α)I + αD̃−1W̃ ,

where 0 ≤ α ≤ 1. The algebraic distance coupling ρij is defined as

ρij =
( R∑
r=1

|χ(k,r)
i − χ(k,r)

j |2
) 1

2 ,

where χ(k,r) = Hkχ(0,r) is a relaxed randomly initialized test vector (i.e., χ(0,r) is a random vector sampled
over [-1/2, 1/2]), R is the number of test vectors, and k is the number of iterations. In our experimental
settings α = 0.5, R = 5, and k = 20.

3.1 Coarsening

To the best of our knowledge, the existing multilevel algorithms for combinatorial optimization problems
(such as k-partitioning, linear ordering, clustering, and segmentation) can be divided into two classes:
contraction-based schemes [25,9,15] (including contractions of small subsets of nodes [3]) and algebraic multi-
grid (AMG)-inspired schemes [21,14,27,20].

AMG-inspired coarsening. One of the most traditional approaches for derivation of the coarse systems
in AMG is the Galerkin operator [31], which projects the fine system of equations to the coarser scale. In
the context of graphs this projection is defined as

Lc = PLfP
T , (1)

where Lf and Lc are the Laplacians of fine and coarse graphs Gf = (Vf , Ef ) and Gc = (Vc, Ec), respectively.
The (i, J)th entry of projection matrix P represents the strength of the connection between fine node i and
coarse node J . The entries of P, called interpolation weights, describe both the coarse-to-fine and fine-to-
coarse relations between nodes.

The coarsening begins by selecting a dominating set of (seed or coarse) nodes C ⊂ Vf such that all other
(fine) nodes in F = Vf \C are strongly coupled to C. This selection can be done by traversing all nodes and
leaving node i in F (initially F = Vf , and C = ∅) that satisfy∑

j∈C
1/ρij ≥ Θ ·

∑
j∈Vf

1/ρij , (2)
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where Θ is a parameter of coupling strength. As in AMG-based approaches for linear ordering problems [22]
we observed that the order in which Vf is traversed does play an important role in reducing the dependence
on random seeds (for details on future volume ordering see [21]).

The Galerkin operator construction differs from other AMG-based approaches for combinatorial optimiza-
tion problems. Balancing constraints of the partitioning problem require a limited number of fine-to-coarse
attractions between i ∈ C (ith column in P ) and its neighbors from F (nonzero entries in the ith column
in P ). In particular, this is important for graphs where the number of high-degree nodes in C is smaller
than the number of parts in the desired partition. Another well-known problem of AMG that can affect the
performance of the solver is the complexity of coarse levels. Consideration of the algebraic distance makes it
possible to minimize the order of interpolation (the number of fractions a node from F can be divided to)
to 1 or 2 only [21]. Algorithm 1 summarizes the construction of P .

input : G, i ∈ Vf , P

if i ∈ C then1

PiI(j) ← 1;2

else3

l← list of at most κ algebraically strongest connections of i to C;4

{e1, e2} ← algebraically strongest pair of edges (according to ρe1 + ρe2) in l such that the5

corresponding C-neighbors are not over-loaded if i is divided between them;
if {e1, e2} 6= ∅ then6

l← {e1, e2}7

else8

e1 ← algebraically strongest connection of i to C such that the corresponding C-neighbor is not9

over-loaded if i is aggregated with it;
l← {e1};10

if l is empty then11

move i to C12

else13

Nc
i ← C-neighbors of i that adjacent to edges in l;14

PiI(j) ← 1/(ρij ·
∑

k∈Nc
i

1/ρik) for j ∈ Nc
i ;15

update future volumes of j ∈ Nc
i ;16

Algorithm 1: Interpolation weights for P

Algorithm 1 can be viewed as simplified version of bootstrap AMG [4] with the additional restriction
on future volume of aggregates and adaptive interpolation order. PiI(j) thus represents the likelihood of i
belonging to the I(j)th aggregate. The edge connecting two coarse aggregates p and q is assigned with the
weight wpq =

∑
k 6=l PkpwklPlq. The volume of the pth coarse aggregate is

∑
j c(j)Pjp. We emphasize the

property of adaptivity of C (line 15 in Algorithm 1), which is updated if the balancing of aggregates is not
satisfied.

We mention the difference between our AMG scheme and the weighted aggregation (WAG) scheme in
[8]. The common principle that works in both schemes is based on the division of F -nodes between their
C-neighbors. However, two critical components are missing in [8]: (1) the algebraic distance that forms both
the set of seeds and the interpolation operator; and (2) the weight-balancing algorithmic component when
aggregates are created, namely, operator P in [8] is created as in classical AMG schemes. One important
disadvantage of [8] is a relatively high density of coarse levels, which is eliminated with introduction of
the algebraic distance. This was achieved by reducing the order of interpolation to 1 or 2. The balancing
factor played an important role in reducing the running time of the algorithm. Recently introduced max-
flow/min-cut refinement leads to noticeably better results than FM/KL heuristics (explained in Section
3.3). In contrast to simple FM/KL swaps, however, its complexity becomes higher if the aggregates are
unbalanced with respect to the maximum size of one part. Applying this refinement with unbalanced WAG
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can significantly increase the total running time of the solver or lead to weak solutions if the refinement
is terminated before it finds a good local minimum. Overall, the performance of our AMG scheme differs
significantly from what we observed with WAG.

Matching based coarsening. Another coarsening framework, which is more popular because of its sim-
plicity and faster performance, is the matching based scheme. In this scheme a coarse graph is constructed
by using contractions derived from a preprocessed edge matching. This scheme represents a special case of
PLfP

T in which nnzr(P, r) = 1 for all rows r in P , and 1 ≤ nnzc(P, c) ≤ 2 for all columns c in P .

Global Paths Algorithm. The Global Paths Algorithm (GPA), was proposed in [16] as a synthesis of Greedy
and Path Growing algorithms [10]. Similar to the Greedy approach, GPA scans the edges in order of de-
creasing weight (or rating); but rather than immediately building a matching, it first constructs a collection
of paths and even length cycles. To be more precise, these paths initially contain no edges. While scanning
the edges, the set is then extended by successively adding applicable edges. An edge is called applicable if it
connects two endpoints of different paths or the two endpoints of an odd length path. Afterwards, optimal
solutions are computed for each of these paths and cycles using dynamic programming. KaFFPaStrong [25]
employs innerOuter on the first level of the hierarchy since expansion∗2 evaluates to one on unweighted
graphs. Afterwards it uses expansion∗2.

RandomGPA Algorithm. This algorithm is used by the classic KaFFPaEco configuration. It is a synthesis
of the most simple random matching algorithm and the GPA algorithm. To be more precise the matching
algorithm is dependent of the number of blocks the graph has to be partitioned in. It matches the first
max{2, 7−log k} levels using the random matching algorithm and switches to the GPA algorithm afterwards.
The random matching algorithm traverses the nodes in a random order and if the current node is not already
matched it chooses a random unmatched neighbor for the matching. KaFFPaEco employs expansion∗2 as a
rating function as soon as it uses GPA.

3.2 The Coarsest Level

Contraction is stopped when the graph is small enough to be partitioned by some other expensive algorithm.
We use the same initial partitioning scheme as in KaFFPa [25], namely, the libraries Scotch and Metis for
initial partitioning. For AMG, some modifications have to be made since Scotch and Metis cannot deal with
fractional numbers and Metis expects ωij ≥ 1. To overcome this implementational problem, we perform the
following two steps. First, we divide each edge weight of the coarsest graph by the smallest edge weight that
occurred on that level. This step assures edge weights larger than or equal to one without skewing the graph
partitioning problem for the library used. Second, we get rid of the fractional edge weights using randomized
rounding. Let e ∈ E be an edge with fractional edge weight. We then obtain an integer edge weight ω̃(e) by
flipping a coin with probabilities P(head) = ω(e) − bω(e)c,P(tail) = 1 − P(head). In the case of heads we
set the edge weight ω̃(e) to dω(e)e; otherwise we set it to bω(e)c. This way we can assure that the value of
the cut in the graph G̃ = (Vk, Ek, ω̃) produced by the external initial partitioning algorithm is close to the
real cut value in G.

3.3 Uncoarsening

Recall that uncoarsening undoes contraction. For AMG-based coarsening this means that fine nodes have
to be assigned to blocks of the partition of the finer graph in the hierarchy. We assign a fine node v to the
block that minimizes cutB · pB(v), where cutB is the cut after v would be assigned to block B and pB(v) is
a penalty function to avoid blocks that are heavily overloaded. To be more precise, after some experiments

we fixed the penalty function to pB(v) = 2max(0,100
c(B)+c(v)

Lmax
), where Lmax is the upper bound for the block

weight. Note that slight imbalances (e.g. overloaded blocks), can usually be fixed by the refinement algorithms
implemented within KaFFPa. For matching-based coarsening the uncoarsening is straightforward: a vertex
is assigned to the block of the corresponding coarse vertex.
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Karlsruhe Fast Flow Partitioner (KaFFPa). Since we integrated different coarsening schemes into the multi-
level graph partitioner KaFFPa [25], we now briefly outline the techniques KaFFPa uses during uncoarsening.
After a matching is uncontracted, local search-based refinement algorithms move nodes between block bound-
aries in order to reduce the cut while maintaining the balancing constraint. Local improvement algorithms
are usually variants of the FM algorithm [11]. The variant KaFFPa uses is organized in rounds. In each
round, a priority queue P is used that is initialized with all vertices that are incident to more than one block,
in a random order. The priority is based on the gain g(i) = maxP gP (i) where gP (i) is the decrease in edge
cut when moving i to block P . Local search then repeatedly looks for the highest gain node v and moves it
to the corresponding block that maximizes the gain. However, in each round a node is moved at most once.
After a node is moved, its unmoved neighbors become eligible, i.e. its unmoved neighbors are inserted into
the priority queue. When a stopping criterion is reached, all movements to the best-found cut that occurred
within the balance constraint are undone. This process is repeated several times until no improvement is
found.

Max-Flow Min-Cut Local Improvement. During the uncoarsening phase KaFFPa additionally uses more
advanced refinement algorithms. The first method is based on max-flow min-cut computations between pairs
of blocks, in other words, a method to improve a given bipartition. Roughly speaking, this improvement
method is applied between all pairs of blocks that share a nonempty boundary. The algorithm basically
constructs a flow problem by growing an area around the given boundary vertices of a pair of blocks such
that each s-t cut in this area yields a feasible bipartition of the original graph/pair of blocks within the
balance constraint. One can then apply a max-flow min-cut algorithm to obtain a min-cut in this area and
therefore a nondecreased cut between the original pair of blocks. This can be improved in multiple ways, for
example, by iteratively applying the method, searching in larger areas for feasible cuts, and applying most
balanced minimum cut heuristics. For more details we refer the reader to [25].

Multi-try FM. The second method for improving a given partition is called multi-try FM. This local im-
provement method moves nodes between blocks in order to decrease the cut. Previous k-way methods were
initialized with all boundary nodes, i.e., all boundary nodes were eligible for movement at the beginning.
Roughly speaking, the multi-try FM algorithm is a k-way improvement method that is initialized with a
single boundary node, thus achieving a more localized search. This is repeated several rounds. For more
details about the multi-try FM algorithm we refer the reader to [25].

4 Experimental Evaluation

Configurations of KaFFPa. The AMG coarsening was implemented separately based on the coarsening for
linear ordering solvers from [21] and was integrated into KaFFPa [25]. The computational experiments have
been performed with six configurations of KaFFPa, which are presented in Table 1. All configurations use
the described FM algorithm and flows for the refinement. The strong configurations further employ flows
using larger areas, multi-try FM and F-cycles. A detailed description of the refinement configurations can be
found in [25]. Throughout this section, because of the respective similar running times, we concentrate on
two groups of comparison: for fast versions (AMG-ECO, ECO, ECO-ALG) and for strong versions (AMG,
STRONG, F-CYCLE). To be precise, usually the running time of F-CYCLE is bigger than that of STRONG
and AMG. However, the running time gap between fast and strong versions is even more significant on
average. Since the main goal of this paper is to introduce the AMG coarsening with different uncoarsening
configurations, most of the comparisons will be of type AMG vs respective non-AMG ratios. A comprehensive
comparison of the F-CYCLE and the STRONG configuration can be found in [25].

All experiments are performed with fixed imbalance factor 3%. We also checked other small values,
namely, 0%, 1%, and 5%; however, no significant difference in the comparison of the respective methods was
observed.
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ECO Represents the classical KaFFPaEco configuration, a good trade-off of partition quality and runtime.

ECO-ALG Same refinement as in ECO, coarsening uses the GPA algorithm at each level and the edge rating
function employs algebraic distances; i.e., it uses the rating function ex alg(e) := expansion∗2(e)/ρe.

F-CYCLE Represents the classical KaFFPaStrong configuration using strong refinement schemes and the F-cycle
scheme, with the purpose of achieving high partition quality; this configuration achieved the best known
partitions for many instances from Benchmark I in 2010 [25].

STRONG Uses the same refinement and matching schemes as in the F-CYCLE configuration; however, here only
one single V-cycle is performed.

AMG-ECO AMG coarsening based on algebraic distances with interpolation order at most 2, refinement as in ECO.

AMG Same coarsening as in AMG-ECO, same refinement as in STRONG.

Table 1. Description of the six configurations used for the computational experiments.

Benchmark I: Walshaw’s Partitioning Archive. Chris Walshaw’s benchmark archive [28] is a collection of
real-world instances for the partitioning problem. The rules used there imply that the running time is not
an issue, but one wants to achieve minimal cut values for k ∈ {2, 4, 8, 16, 32, 64} and balance parameters
ε ∈ {0, 0.01, 0.03, 0.05}. It is the most used graph partitioning benchmark in the literature. Most of the
graphs of the benchmark come from finite-element applications; however, there are also some graphs from
VLSI design and a road network. Over the years many different heuristics have been tested and adjusted on
this benchmark, so that many heuristics are able to obtain good results on these graphs.

In Figures 2 we present the results of the comparison of the algorithms on these graphs for different
numbers of blocks k. The horizontal axes represent ordered graphs from the benchmark (however, the ordering
itself will be different for each curve). The vertical axes are for ratios that represent the comparison of averages
of final results for a pair of methods. Each figure contains four curves. Each curve correspond to a comparison
of the following pairs of methods: ECO vs. AMG-ECO, ECO-ALG vs. AMG-ECO, STRONG vs. AMG, and
F-CYCLE vs. AMG. Each point on the curves corresponds to the ratio between the average over 10 runs of
one method and the average over 10 runs of another method. Each run depends on different random seeds
and, thus, can produce different results. For example, the last point at the black solid curve in Figure 2a has
value 2.03, which means that

average(ECO final cut given seed s1, · · · , ECO final cut given seed s10)

average(AMG-ECO final cut given seed s1, · · · , AMG-ECO final cut given seed s10)
= 2.03

in experimental series for k = 2. A comparison of the running time for uncoarsening phases is presented
in Figure 3. Each point on the curves in Figure 3 corresponds to a ratio of uncoarsening running times of
two methods. We observed that uncoarsening performance of fast versions (ECO, ECO-ALG, AMG-ECO)
are more or less similar to each other. The uncoarsening of a STRONG V-cycle is somewhat slower than
AMG because of the density of coarse levels. However, the expected slow performance of the F-CYCLE
(due to revised scales) is not justified by the quality of the partitions in contrast to AMG. The averages are
summarized in Table 2.

k ECO/ECO-ALG ECO-ALG/ECO-AMG STRONG/AMG F-CYCLE/AMG

2 1.026 1.034 1.013 1.012
4 1.053 1.021 1.009 1.004
8 1.019 1.023 0.998 0.995
16 1.015 1.012 1.001 0.999
32 1.008 1.017 1.003 1.002
64 1.004 1.009 1.000 0.997

Table 2. Computational comparison for Benchmark I. Each number corresponds to the ratio of averages of final cuts
for pair of methods in the column title and k given in the row.

Benchmark II: Scale-free networks. In scale-free networks the distribution of vertex degrees asymptotically
follows the power-law distribution. Examples of such networks include WWW links, social communities, and
biological networks. These types of networks often contain irregular parts and long-range links (in contrast to
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Fig. 2. Comparison of coarsening schemes on Walshaw’s benchmark graphs. Figures (a)-(f) contain results of compari-
son for k = 2, 4, 8, 16, 32, and 64, respectively. Each figure contains four curves that correspond to ECO/AMG-ECO,
ECO-ALG/AMG-ECO, STRONG/AMG, and F-CYCLE/AMG ratios, respectively. Each point on a curve corre-
sponds to the ratio related to one graph.
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Fig. 3. Comparison of uncoarsening running time on Walshaw’s benchmark graphs for k = 32. The figure contains
four curves that correspond to ECO/AMG-ECO, ECO-ALG/AMG-ECO, STRONG/AMG, and F-CYCLE/AMG
ratios, respectively. Each point on curves correspond to the ratio related to one graph.

.

Benchmark I) that can confuse both contraction and AMG coarsening schemes. Since Walshaw’s benchmark
doesn’t contain graphs derived from such networks, we evaluate our algorithms on 15 graphs collected from
[1,2]. Full information about these graphs, along with the computational results, is available at [23].

The results of the comparison on scale-free graphs are presented in Figure 4. We compare only the
fast versions of AMG and matching-based coarsenings because the strong configurations produce similar
results. Also, in many applications, these graphs can be extremely large, thereby making strong refinements
impractical for certain needs.

Each figure corresponds to a different number of blocks k. The horizontal axes represent graphs from
the benchmark. The vertical axes are for ratios that represent comparison of averages of final results for
a pair of methods. Each graph corresponds to one quadruple of bars. First, second, third and fourth bars
represent averages of ratios ECO/AMG-ECO, ECO-ALG/AMG-ECO after finest refinement, ECO/AMG-
ECO, ECO-ALG/AMG-ECO before finest refinement, respectively. As in the previous case the averages are
calculated over 10 runs.

ECO
ECO-ALG

ECO
ECO-ALG

ECO
ECO-ALG

ECO-ALG
AMG-ECO

ECO-ALG
AMG-ECO

k quality full time uncoarsening time quality uncoarsening time

2 1.38 0.77 1.62 1.16 3.62
4 1.24 1.32 1.85 1.11 2.14
8 1.15 1.29 1.45 1.07 1.94
16 1.09 1.27 1.33 1.06 1.69
32 1.06 1.18 1.23 1.00 1.60
64 1.06 1.13 1.13 1.01 2.99

Table 3. Computational comparison for scale-free graphs.

Benchmark III: Potentially Hard Graphs for Fast k-partitioning Algorithms. Today multilevel strategies
represent one of the most effective and efficient generic frameworks for solving the graph partitioning problem
on large-scale graphs. The reason is obvious: given a successful global optimization technique X for this
problem, one can consider applying it locally by introducing a chain of subproblems along with fixed boundary
conditions. Given this and if the coarsening preserves the structural properties of the graph well enough , the
multilevel heuristic can behave better and work faster than a direct global application of the optimization
technique X. Examples of such combinations include FM/KL, spectral and min-cut/max-flow techniques
with multilevel frameworks. When can the multilevel framework produce low quality results?
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.8

1

1.2

1.4

1.6

Graphs ordered by ratio ECO−ALG/AMG−ECO

R
a
ti

o
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.8

1

1.2

1.4

1.6

1.8

2

Graphs ordered by ratio ECO−ALG/AMG−ECO

R
a
ti

o
s

(c) k = 8 (d) k = 16
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Fig. 4. Comparison of coarsening schemes on scale-free graphs. Figures (a)-(f) contain results of comparison for k = 2,
4, 8, 16, 32, and 64, respectively. Each quadruple of bars correspond to one graph. First, second, third and fourth
bars represent averages of ratios ECO/AMG-ECO, ECO-ALG/AMG-ECO after refinement, ECO/AMG-ECO, and
ECO-ALG/AMG-ECO before refinement, respectively. Three exceptionally high ratios on both Figures are between
2.1 and 3.
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ECO
ECO-ALG

ECO
ECO-ALG

ECO-ALG
AMG-ECO

ECO-ALG
AMG-ECO

STRONG
AMG

STRONG
AMG

F-CYCLE
AMG

quality full quality uncoarsening quality uncoarsening quality
k time time time

2 1.42 0.51 1.18 0.55 1.15 2.11 1.11
4 1.15 0.88 1.23 0.64 1.13 1.69 1.12
8 1.12 1.08 1.08 0.98 1.05 1.37 1.04

Table 4. Computational comparison for potentially hard graphs.

We present a simple strategy for checking the quality of multilevel schemes. To construct a potentially
hard instance for gradual multilevel projections, we consider a mixture of graphs that are weakly connected
with each other. These graphs have to possess different structural properties (such as finite-element faces,
power-law degree distribution, and density) to ensure nonuniform coarsening and mutual aggregation of
well-separated graph regions. Such mixtures of structures may have a twofold effect. First, they can force
the algorithm to contract incorrect edges; and second, they can attract a ”too strong” refinement to reach
a local optimum, which can contradict better local optimums at finer levels. The last situation has been
observed in different variations also in multilevel linear ordering algorithms [22]. In other words, the uneven
aggregation with respect to the scales (not to be confused with uneven sizes of clusters) can lead refinement
algorithms to wrong local attraction basins. Examples of graphs that contain such mixtures of structures
include multi-mode networks [30] and logistics multi-stage system networks [29]. In general, such graphs can
be difficult not only to the multilevel algorithms.

We created a benchmark [23] with potentially hard mixtures. Each graph in this benchmark represents
a star-like structure of different graphs S0, . . . , St. Graphs S1, . . . , St are weakly connected to the center S0

by random edges. Since all the constituent graphs are sparse, a faster aggregation of them has been achieved
by adding more than one random edge to each boundary node. The total number of edges between each
Si and S0 was less than 3% out of the total number of edges in Si. We considered the mixtures of the
following structures: social networks, finite-element graphs, VLSI chips, peer-to-peer networks, and matrices
from optimization solvers.

The comparison on this benchmark is demonstrated in Figure 5. Each graph corresponds to one quadruple
of bars. The first, second, third and the fourth bar represent averages over 10 ratios of ECO/AMG-ECO,
ECO-ALG/AMG-ECO, STRONG/AMG, and F-cycle/AMG, respectively. In almost all experiments we
observed that introduction of algebraic distance as a measure of connectivity plays a crucial role in both fast
versions AMG-ECO and ECO-ALG since it helps to separate the subgraphs and postpone their aggregation
into one mixture. We also observe that both fast and slow AMG coarsenings almost always lead to better
results. Note that in contrast to Benchmarks I and II, the uncoarsening of ECO-ALG is significantly faster
than that of AMG-ECO.

Role of the algebraic distance. In this work the importance of the algebraic distance as a measure of con-
nectivity strength for graph partitioning algorithms has been justified in almost all experimental settings.
In particular, the most significant gap was observed between ECO and ECO-ALG (see all benchmarks),
versions which confirms preliminary experiments in [7], where the algebraic distance has been used at the
finest level only. The price for improvement in the quality is the additional running time for Jacobi over-
relaxation, which can be implemented by using the most suitable (parallel) matrix-vector multiplication
method. However, in cases of strong configurations and/or large irregular instances, the difference in the
running time becomes less influential as it is not comparable to the amount of work in the refinement phase.
For example, for the largest graph in Benchmark I (auto, |V | = 448695, |E| = 3314611) the ECO coarsening
is approximately 10 times faster than that in the ECO-ALG; but for both configurations when k = 64, it
takes less than 3% of the total time. Note that for irregular instances from Benchmark II, already starting
k = 4 the total running time for ECO becomes bigger than in ECO-ALG (see Table 3). More examples of
trade-off between changes in the objectives and those in the running times on Benchmark III are presented
in Figure 6.

Does AMG coarsening help? The positive answer to this question is given mostly by Benchmarks II and III,
which contain relatively complex instances (Tables 3 and 4). On Benchmark III we have demonstrated that
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Fig. 5. Comparison of coarsening schemes on hard examples. Figures (a,c,e) contain results of comparison before
applying finest level refinement. Figure (b,d,f) contain results of comparison of final results. Each quadruple of bars
correspond to one graph. First, second, third and fourth bars represent averages of ratios ECO/AMG-ECO, ECO-
ALG/AMG-ECO, STRONG/AMG, and F-cycle/AMG, respectively. Four exceptionally high ratios on both Figures
are between 3.5 and 5.7.
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Fig. 6. Benchmark III: Trade-off between changes in the objectives (horizontal axis) and those in the running times
(vertical axis) on Benchmark III. Data points for k = 2, 4, and 8 are represented by circles, squares, and triangles,
respectively. Average ratios are calculated each over 10 runs similarly to previous figures. The left and right figures
describe the comparison for ECO vs. ECO-ALG and ECO-ALG vs. STRONG configurations, respectively.

the AMG configuration is superior to F-CYCLE, which runs significantly longer. This result is in contrast
to Benchmark I, in which we did not observe any particular class of graphs that corresponded to stable
significant difference in favor of one of the methods in pairs ECO-ALG vs AMG-ECO and STRONG vs
AMG. However, we note that in both Benchmarks I and II several graphs exhibited that AMG versions
yield to the respective matching for large k. The problem is eliminated when we stabilize ρ by using more
relaxations according to Theorem 4.2 in [21]. We cannot present here the exact comparison of coarsening
running times because their underlying implementations are very different. Theoretically, however, if in both
matching and AMG configurations the algebraic distance is used and when the order of interpolation in
AMG is limited by 2 (and usually it is 1, meaning that the coarse graphs are not dense like in [8]), the exact
complexity of AMG coarsening is not supposed to be bigger than that of matching.

5 Conclusions

We introduced a new coarsening scheme for multilevel graph partitioning based on the AMG coarsening.
One of its most important components, namely, the algebraic distance connectivity measure, has been in-
corporated into the matching coarsening schemes. Both coarsening schemes have been compared under fast
and strong configurations of refinement. In addition to the standard benchmark for graph partitioning [28],
we introduced a new benchmark with potentially hard graphs for large-scale graph partitioning solvers [23]
. As the main conclusion of this work, we emphasize the success of the proposed AMG coarsening and the
algebraic distance connectivity measure between nodes demonstrated on highly irregular instances. One has
to take into account the trade-off between increased running time when using algebraic distance and im-
proved quality of the partitions. The increasing running time becomes less tangible with growth of graph
size compared with the complexity of the refinement phase.

Many opportunities remain to improve the coarsening schemes for graph partitioning. We demonstrated
the crucial importance of the connectivity strength metrics (especially for fast versions of the algorithm)
which raises the question how one can use these metrics at the uncoarsening phase. Preliminary experiments
show that this has the potential to improve fast versions even more. Another issue that requires more insight
is related to the balancing of AMG aggregates. We observed a number of examples for which the unbalanced
coarsening produces noticeably better results.
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